Nonparametric Analysis of Randomized Experiments with Missing Covariate and Outcome Data
نویسندگان
چکیده
منابع مشابه
Parametric and Nonparametric Regression with Missing X’s—A Review
This paper gives a detailed overview of the problem of missing data in parametric and nonparametric regression. Theoretical basics, properties as well as simulation results may help the reader to get familiar with the common problem of incomplete data sets. Of course, not all occurences can be discussed so this paper could be seen as an introduction to missing data within regression analysis an...
متن کاملNonparametric variance function estimation with missing data
In this paper a fixed design regression model where the errors follow a strictly stationary process is considered. In this model the conditional mean function and the conditional variance function are unknown curves. Correlated errors when observations are missing in the response variable are assumed. Four nonparametric estimators of the conditional variance function based on local polynomial f...
متن کاملAddressing missing outcome data in meta-analysis.
OBJECTIVE Missing outcome data are a common problem in clinical trials and systematic reviews, as it compromises inferences by reducing precision and potentially biasing the results. Systematic reviewers often assume that the missing outcome problem has been resolved at the trial level. However, in many clinical trials a complete case analysis or suboptimal imputation techniques are employed an...
متن کاملITT analysis of randomized encouragement design studies with missing data.
In this paper, we considered a missing outcome problem in causal inferences for a randomized encouragement design study. We proposed both moment and maximum likelihood estimators for the marginal distributions of potential outcomes and the local complier average causal effect (CACE) parameter. We illustrated our methods in a randomized encouragement design study on the effectiveness of flu shots.
متن کاملMissing Binary Covariate Data and Imputation in Regression Models
This paper presents a simple way to handle missing values in categorical covariates, namely conditional probability imputation . Properties of this technique are given for various patterns of missing data in regression studies . An example shows its use in the proportional hazards model . The probability imputation technique is furthermore compared with multiple imputation and model-based appro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the American Statistical Association
سال: 2000
ISSN: 0162-1459,1537-274X
DOI: 10.1080/01621459.2000.10473902